

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Introduction to focus group topics

- The f(A) bulous workshop on matrix functions and exponential integrators
- Stéphane Gaudreault, Kathryn Lund, and Marcel Schweitzer
- 25 September 2023

Supported by:

- 1. Background
- 2. Knowledge transfer
- 3. High-performance and energy-aware computing
- 4. Benchmark problems and FAIR comparisons
- 5. Instructions for focus groups

- From a mathematical point of view...
 - More challenges due to nonlinearity
 - Rich theories: complex analysis, functional analysis, PDEs, etc.
- From a computer science point of view...
 - Adaptation of tools and methods for Ax = b
 - Nontrivial implementations required for robust solvers
- From an applications point of view...
 - Lattice quantum chromodynamics
 - Evolutionary advection-diffusion-reaction equations
 - Computational fluid dynamics
 - Chemical master equation
 - Gaussian processes
 - Stiff matrix differential equations
 - Network analysis

- 1. Background
- 2. Knowledge transfer
- 3. High-performance and energy-aware computing
- 4. Benchmark problems and FAIR comparisons
- 5. Instructions for focus groups

So the problem, many angles

- General (dense) matrix functions: f(A)
- Matrix functions times a vector: f(A)b
- Exponential integrators: $\exp(tA)\boldsymbol{b}$
- Related problems:
 - trace (f(A))
 - **b**^Tf(A)**b**
 - $\bullet f\{A,B\}(C)$
 - Lyapunov, Sylvester, and Stein equations
 - Fréchet derivatives
 - $\bullet \ \kappa(f(A))$

https://commons.wikimedia.org/wiki/

Category:Elephants

- What do these problems have in common? What are the underlying "kernels"?
- What techniques have been tested for one problem, but not yet another?
- How do these problems differ significantly, i.e., where should we be careful not to over simplify?
- Which functions *f* aren't getting enough attention?
- What role could / should machine learning play here?
- How do we measure success / performance / effort / accuracy / efficiency / stability?
- How can we improve communication between diverse members of this community?

- 1. Background
- 2. Knowledge transfer
- 3. High-performance and energy-aware computing
- 4. Benchmark problems and FAIR comparisons
- 5. Instructions for focus groups

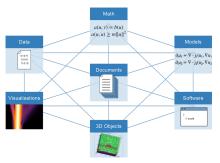
MareNostrum-4 in Barcelona

https://commons.wikimedia.org/wiki/File:

- 2017_BSC_Superordenador_MareNostrum-4_
- Barcelona-Supercomputing-Center.jpg

- Machine access
- Scaling
- Parallelization
- Fault tolerance
- Hardware limits- CPU speed, bandwidth, latency, RAM, harddrive storage
- Operating costs
- CO2 emissions

So Key questions


- What strategies can transfer from linear systems? What doesn't transfer?
- What existing tools and libraries can be adapted, built upon, or extended?
- How to optimize the dense problem?
- What should computational models for $f(A)\boldsymbol{b}$ look like?
- What challenges do exponential integrators or other specific *f* face in particular?
- Is f(A)b ready for exascale?
- What role could / should machine learning play here?
- How do we measure success / performance / effort / accuracy / efficiency / stability?
- How can we improve communication between diverse members of this community?

- 1. Background
- 2. Knowledge transfer
- 3. High-performance and energy-aware computing
- 4. Benchmark problems and FAIR comparisons
- 5. Instructions for focus groups

So Research data management

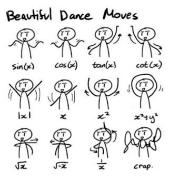
- FAIR principles: Findability, Accessibility, Interoperability, and Reproducibility
- Benchmark problem collections
- Algorithm comparison workflows
- Bare minimum: publish your code and data with an open license!

Borrowed from the MAthematical Research Data Initiative (MaRDI) www.mardi4nfdi.de

- What should benchmark problems look like for f(A)b and exponential integrators? Are there existing collections that we can adapt? What types of problems would help you in your own research?
- What problems arise when you try to share your data and code? What problems arise when you try to use someone else's data and code?
- How do we incentivize community contributions?
- When developing new algorithms, how do we establish what is state-of-the-art?
- How do we define "algorithm isotopes"?
- What role could / should machine learning play here?
- How can we improve communication between diverse members of this community?

- 1. Background
- 2. Knowledge transfer
- 3. High-performance and energy-aware computing
- 4. Benchmark problems and FAIR comparisons
- 5. Instructions for focus groups

💿 Choose your topic...



- ...find your group leader^a
 - Marcel: Knowledge transfer
 - Stéphane: HPC
 - Kathryn: FAIR Benchmarking
- ...find somewhere nice to work
 - Prigogine (here)
 - Wiener (next door)
 - Technikum (3rd floor with a foosball table)
- ...appoint 1-2 people to take notes
- ...grab some sugar and caffeine
- ...discuss!

^aTry to evenly distribute!

- Plan to present your results tomorrow afternoon
 - 30 min per group
 - Any format welcome:
 - Flipchart
 - Typed notes
 - Powerpoint/Beamer
 - Chalkboard
 - Interpretive dance
- Be creative, controversial, counterintuitive... but courteous!
- Extra motivation: submissions to ETNA special issue due 21 January 2024

https://indico3.mpi-magdeburg.mpg.de/e/fabulous2023