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Parametrized nonlinear dynamical systems often arise upon discretizing parametrized partial differential equa-
tions (PDEs). Typically, the former tends to be of a large scale, i.e., the number of state variables could be
significantly high (the state vector is denoted with x(t, p), p is the vector of parameters, the nonlinearity is
f(x(t, p), p), while the matrices corresponding to the linear part are E(p), A(p), and B(p)). Solving it repeatedly
at different parameter samples p (e.g., in the context of optimization and/or uncertainty quantification) tends
to be an expensive pursuit. To address this, a reduced-order model (ROM) of the same structure can be ob-
tained using well-known approaches such as proper orthogonal decomposition (POD), reduced basis method
(RBM), and balanced truncation (BT). The number of equations in this formulation is usually far lesser com-
pared to the full-order model, which makes it amenable to rapid, real-time evaluations, thereby circumventing
expensive simulations associated with large-scale system evaluation.

In the context of the POD or RBM, snapshots of the solution vectors x(t, p), obtained at different time instances
and different parameter samples are used to obtain a suitable projection matrix V which can be used to obtain
the ROM via Galerkin projection.
A key implicit assumption in defining the reduced quantities thus obtained is that the matrices E(p), A(p), B(p),
f(x(t, p), p) have an affine parameter dependence. While the affine parametric dependence assumption indeed
holds in several applications, there are many cases where it does not hold. That is, it is impossible to know, a
priori, the parameter affine form. In such scenarios, there is a need for a cheap and effective approximation
technique to learn a function mapping the parameter p to the reduced matrices.

Pre-existing works that tackle the issue of non-affine parametrized matrices and/or vectors are only a few; in
[Negri et al. ‘15] the authors introduced the matrix discrete empirical interpolation method (MDEIM) which
leverages DEIM [Chaturantabut/Sorensen ‘10] to learn the mapping from the parameter to the reduced system
matrix. However, this method needs data/entries of E(p) evaluated at a sparse set of locations. In the work
[Degroote et al. ‘10], the authors propose an entry-wise interpolation of E(p) using splines. The same work
also introduces a different technique of interpolating the reduced matrices over a Riemannian manifold for
better approximation.

Recently, [Pelling et al. ‘24] exposed an interesting application of the classic Loewner approach for ratio-
nal approximation in the context of parametric linear time-invariant (pLTI) systems. The authors utilize the
snapshots of parametrized system matrices and the linear fractional transform to obtain ROMs of pLTIs. An
intermediate step involved in the approach proposed in [Pelling et al. ‘24] is the use of the univariate Loewner
approximation method in [Mayo/Antoulas ‘07] to interpolate large-scale system matrices E(p), A(p), and B(p).
In our work, we rely on the observation of [Pelling et al. ‘24], but instead use it to learn a map from the pa-
rameter p to the reduced system matrices obtained via Galerkin projection. We do this by utilizing extensions
of the Loewner framework for multiple parameters [Ionita/Antoulas ‘14], that rely on multivariate barycen-
tric forms. Challenges that occur in this process come from dealing with a higher number of parameters (in
the vector p) and with the non-scalar format of the data. We deal with these by accommodating the gener-
alized barycentric forms to the matrix format (using barycentric formulas with matrix-valued weights as in
[G./Guettel ‘21]), as well as allowing an adaptive choice of interpolation points (parameter values). Several
numerical examples attest to the practical applicability of the proposed method.
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