Fast, matrix-free matrix-vector product with the Loewner matrix

The Loewner framework is one of the most successful data-driven model order reduction techniques. Given k right interpolation data and h left interpolation data, the standard layout of this approach is composed of two stages.

First, the $kh \times kh$ Loewner matrix \mathbb{L} and shifted Loewner matrix \mathbb{L}_s are constructed. Then, an SVD of $\mathbb{L}_s - \gamma \mathbb{L}$, $\gamma \in \mathbb{C}$ belonging to one of the data sets, provides the projection matrices used to compute the sought reduced model.

These two steps become numerically challenging for large k and h in terms of both computational time and storage demand.

We show how the structure of \mathbb{L} and \mathbb{L}_s can be exploited to reduce the cost of performing $(\mathbb{L}_s - \gamma \mathbb{L})x$ while avoiding the explicit allocation of \mathbb{L} and \mathbb{L}_s .

Primary authors: PALITTA, Davide (Max Planck Institute for Dynamics of Complex Technical Systems); Prof. LEFTERIU, Sanda (Ecole des Mines de Douai)

Presenter: PALITTA, Davide (Max Planck Institute for Dynamics of Complex Technical Systems)

Track Classification: Talks