Symplectic Integrators for Differential Riccati Equations

Let $A, S, X_{0} \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times b}$ be. Moreover assume that S, X_{0} are symmetric positive semidefinite. We consider
\begin\{align\} }
$\backslash \operatorname{dot}\{\mathrm{X}\}(\mathrm{t}) \&=\mathrm{A}^{\wedge} \mathrm{T} X(\mathrm{t})+\mathrm{X}(\mathrm{t}) \mathrm{A}-\mathrm{X}(\mathrm{t}) \mathrm{S} \mathrm{X}(\mathrm{t})+\mathrm{C}^{\wedge} \mathrm{T} \mathrm{C}, \backslash \backslash \backslash$
$X(0) \&=X _0$.
lend\{align\}
It is well known that the solution X can be obtained from the Hamiltonian system
\begin\{align\} }
\backslash begin $\{$ bmatrix $\} \backslash \operatorname{dot}\{\mathrm{U}\}(\mathrm{t}) \backslash \backslash \backslash \backslash \backslash \operatorname{dot}\{\mathrm{V}\}(\mathrm{t})$ \end } \{ bmatrix \}
\& $=$
-H \begin\{bmatrix\} } \mathrm { U } (\mathrm { t }) \backslash \backslash \backslash \backslash \mathrm { V } (\mathrm { t }) \end\{bmatrix\}
$=$
-\begin\{bmatrix\} A \& -S } \backslash \backslash \backslash \backslash - C ^ { \wedge } T C \& - A ^ { \wedge } T lend\{bmatrix \}
\backslash begin $\{$ bmatrix $\}(t) \backslash \backslash \backslash \backslash V(t) \backslash e n d\{b m a t r i x\}, ~ \ \backslash \backslash \backslash$
\begin\{bmatrix\} } \mathrm { U } (0) \backslash \backslash \backslash \backslash \mathrm { V } (0) \end\{bmatrix\}
\& =
\begin\{bmatrix\} I_n \IIIX X_0 \end\{bmatrix\}, }
\end\{align\} }
by the formula $X(t)=V(t) U(t)^{-1}$.
The solution of the Hamiltonian system can be expressed in terms of the matrix exponential of the Hamiltonian
$-H$, which is symplectic.
This motivates to approximate the flow by numerical schemes, which uses symplectic transformations.

Primary author: BEHR, Maximilian (Max Planck Institute for Dynamics of Complex Technical Systems)

Presenter: BEHR, Maximilian (Max Planck Institute for Dynamics of Complex Technical Systems)

Track Classification: Talks

