Skip to main content

Zeros, poles and system equivalence of time-delay systems

27 May 2025, 12:00
30m
H2036 (TU Berlin)

H2036

TU Berlin

Talk Talks

Speaker

Rafikul Alam (IIT Guwahati)

Description

Consider the linear time-invariant time-delay system (TDS)

dx(t)dt=A0x(t)+j=1N1Ajx(tτj)+j=1N2Bju(ttj),y(t)=j=1N3Cjx(tsj)+j=1N4Dju(thj), where x(t)Cr and u(t)Cn are state and control vectors, respectively, at a time t; (Ai,Bi,Ci,Di)Cr×r×Cr×n×Cm×r×Cm×n and (τi,ti,si,hi) are time-delay parameters. A system matrix S(λ) and the transfer function M(λ) of the TDS are given by S(λ):=[A(λ)B(λ)C(λ)D(λ)]andM(λ):=D(λ)+C(λ)A(λ)1B(λ) where - A(λ):=λIrA0j=1N1Ajeλτj - B(λ):=j=1N2Bjeλtj - C(λ):=j=1N3Cjeλsj - D(λ):=j=1N4Djeλhj are entire matrix-valued functions. Our main aim is two-fold. First, to study the canonical forms of S(λ) and M(λ) so as to analyze zeros and poles of the TDS. Second, to investigate system equivalence, that is, if $\mathbf{S}1(\lambda)and\mathbf{S}_2(\lambda)aresystemmatricesoftimedelaysystems,theninvestigateRosenbrocksystemequivalence(writtenas\mathbf{S}_1(\lambda)\sim{rse} \mathbf{S}2(\lambda))aswellasFuhrmannsystemequivalence(writtenas\mathbf{S}_1(\lambda)\sim{fse} \mathbf{S}2(\lambda)).Weshowthat\mathbf{M}(\lambda)admitsaSmithMcMillanform\Sigma{\mathbf{M}}(\lambda)givenbyΣM(λ)=[ϕ1(λ)ψ1(λ)ϕp(λ)ψp(λ)0mp×np],where\phi_1, \ldots, \phi_pand\psi_1, \ldots, \psi_pareentirefunctions,\phi_jand\psi_jarerelativelyprime.Further,\phi_jdivides\phi_{j+1}and\psi_{j+1}divides\psi_jforj=1 \ldots p-1.Furthermore,ϕj(λ)==1(λλ)j(λ)uj(λ),andψj(λ)==1(λμ)δj(μ)vj(λ),whereu_{j\ell}andv_{j\ell}areentirefunctionswithnozerosin\mathbb{C},\lambda_\elland\mu_\ellarezerosandpolesof\mathbf{M}(\lambda),\partial_j({\lambda_\ell})and\delta_j(\mu_\ell)areappropriatenonnegativeintegersforj=1:pand\ell \in \mathbb{N}.Wealsoshowthat\mathbf{M}(\lambda)admitsarightcoprimematrixfractiondescription(MFD),thatis,thereexistentirematrixvaluedfunctionsN(\lambda)andD(\lambda)suchthatN(\lambda)andD(\lambda)arerightcoprime,D(\lambda)isregular,andM(λ)=N(λ)D(λ)1.Further,\sigma_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(N)and\wp_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(D),where\sigma_{\mathbb{C}}(X)isthespectrum(setofzeros)and\wp_{\mathbb{C}}(X)isthesetofpolesofameromorphicmatrixvaluedfunctionX(\lambda).Forsystemmatrices,weshowthatS1(λ)rseS2(λ)S1(λ)fseS2(λ).Further,if\mathbf{S}1(\lambda)and\mathbf{S}_2(\lambda)areirreduciblethenS1(λ)rseS2(λ)S1(λ) and S2(λ)havethesametransferfunction.Finally,if\mathbf{S}(\lambda)isirreducibleand\Sigma{\mathbf{M}}(\lambda)istheSmithMcMillanformof\mathbf{M}(\lambda)asgivenabove,thenweshowthatSA(λ)=Irpdiag(ψp(λ),ψp1(λ),ψ1(λ))SS(λ)=Irdiag(ϕ1(λ),,ϕp(λ))0mp,nparetheSmithformsofA(\lambda)and\mathbf{S}(\lambda),respectively.Henceweshowthat\sigma_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(\mathbf{S})and\wp_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(A)$.

Author

Rafikul Alam (IIT Guwahati)

Presentation materials

There are no materials yet.