Consider the linear time-invariant time-delay system (TDS)
where and are state and control vectors, respectively, at a time ; and are time-delay parameters. A system matrix and the transfer function of the TDS are given by
where
-
-
-
-
are entire matrix-valued functions.
Our main aim is two-fold. First, to study the canonical forms of and so as to analyze zeros and poles of the TDS. Second, to investigate system equivalence, that is, if $\mathbf{S}1(\lambda)\mathbf{S}_2(\lambda)\mathbf{S}_1(\lambda)\sim{rse} \mathbf{S}2(\lambda)\mathbf{S}_1(\lambda)\sim{fse} \mathbf{S}2(\lambda)\mathbf{M}(\lambda)\Sigma{\mathbf{M}}(\lambda)\phi_1, \ldots, \phi_p\psi_1, \ldots, \psi_p\phi_j\psi_j\phi_j\phi_{j+1}\psi_{j+1}\psi_jj=1 \ldots p-1u_{j\ell}v_{j\ell}\mathbb{C}\lambda_\ell\mu_\ell\mathbf{M}(\lambda)\partial_j({\lambda_\ell})\delta_j(\mu_\ell)j=1:p\ell \in \mathbb{N}\mathbf{M}(\lambda)N(\lambda)D(\lambda)N(\lambda)D(\lambda)D(\lambda)\sigma_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(N)\wp_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(D)\sigma_{\mathbb{C}}(X)\wp_{\mathbb{C}}(X)X(\lambda)\mathbf{S}1(\lambda)\mathbf{S}_2(\lambda)\mathbf{S}(\lambda)\Sigma{\mathbf{M}}(\lambda)\mathbf{M}(\lambda)A(\lambda)\mathbf{S}(\lambda)\sigma_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(\mathbf{S})\wp_{\mathbb{C}}(\mathbf{M}) = \sigma_{\mathbb{C}}(A)$.