We propose a supervised learning methodology for use of the random feature model as a data-driven surrogate for operators mapping between spaces of functions. Although our methodology is quite general, we consider operators defined by partial differential equations (PDEs); here, the inputs and outputs are themselves functions, with the input parameters being functions required to specify a...

Partial differential equations (PDEs) are commonly used to model complex systems in applied sciences. Methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high and expensive. To make these problems tractable we use reduced-order models (ROMs) to reduce the computational cost of PDE...

The formation and oscillation of bubbles is important in cavitation related to turbomachinery, and in biomedical applications, such as contrast-enhanced ultrasound imaging and drug delivery for cancer treatment. There is an extensive literature on the modeling and analysis of bubble oscillations in these settings, allowing for detailed simulations from first principles. However, there are...

Harmful algal blooms (HABs) are a growing public health concern both nation and worldwide. Last year there were 25 major sites of HABs in the state of Utah alone. These blooms are caused in part by excess nutrients (nitrogen and phosphorus) being discharged from wastewater treatment plants (WWTPs). To combat the growing prevalence of HABs the state of Utah is imposing new nitrogen and...

We are developing a pneumatic Hybrid-Fluidic Elastomer Actuator (H-FEA) by combining an additively manufactured internal structure and silicone elastomer. It is evident that in many soft robotic applications, there is a need to be able to sense shape of the robot and collision with the environment. To address these needs, we are developing an analytical model of the nonlinear kinematics of the...

Tendon-Driven Continuum Manipulators (TD-CMs) have gained increasing popularity in various minimally invasive surgical robotic applications. However, the adverse effects of tendon-sheath friction along the transmission path may result in significant non-uniform cable tension and subsequently motion losses, which affects the deformation behavior of a TD-CM. Most of the current approaches for...

The Dynamic Mode Decomposition (DMD) algorithm was first introduced in the fluid mechanics community for analyzing the behavior of nonlinear systems. DMD processes empirical data and produces approximations of eigenvalues and eigenvectors (“DMD modes”) of the linear Koopman operator that represents the nonlinear dynamics. In fluid dynamics, this approach has been used to both analyze...

Within each animal cell is a complex infrastructure of microtubules and motor proteins that translate energy from ATP cycles into a complex fluid flow. Although this process is vital for intracellular transport of nutrients, a quantitative mathematical model for this system remains elusive. Recent experimental work has produced high-resolution video of this system and made possible attempts to...

The mass of a nucleus is its fundamental quantity. It dictates the stability of a particular nucleus, the type of decays and nuclear reactions it can undergo, and much more. Yet after decades of experimental efforts, we are unable to experimentally measure the masses of thousands of exotic isotopes. They cannot be produced in the laboratory so we have to rely on theoretical models. However,...

Cognitive impairment is one of the most prominent symptoms of age-related diseases such as Alzhei-mer’s disease or Lewy body disease. Therefore, it is not surprising that cognitive impairment is one of the variables that is usually measured in longitudinal studies of Alzheimer’s disease. However, if we look naively at the progression of cognitive impairment in a patient, we cannot obtain...

We present a new neural-network architecture, called the Cholesky-factored symmetric positive definite neural network (SPD-NN), for modeling constitutive relations in computational mechanics. Instead of directly predicting the stress of the material, the SPD-NN trains a neural network to predict the Cholesky factor of the tangent stiffness matrix, based on which the stress is calculated in the...

The ability for sparse symbolic machine learning techniques to discover governing equations from data [1], [2] has opened up many opportunities in fluid mechanics. The equations solved in fluid mechanics are conservation of mass, momentum, and energy as well as the closure models. Closure models arise from averaging the conservation equations. Averaging introduces additional terms, which...

In the context of multi-material lightweight assemblies, structural joints such as adhesives and bolts should be taken into account in the FE models for a reliable representation of the reality. The goal of this research work is to identify the parameters of the joints models exploiting the potential of the Virtual Sensing techniques.

Parameters identification can be achieved via the...

The need to solve discrete ill-posed problems arises in many areas of science and engineering. Solutions of these problems, if they exist, are very sensitive to perturbations in available data. Regularization replaces the original problem by a nearby regularized problem, whose solution is less sensitive to the error in the data. The

regularized problem contains a fidelity term and a...

Recent years have seen a massive explosion of datasets across all areas of science, engineering, technology, medicine, and the social sciences. The central questions are: How do we optimally learn from data through the lens of models? And how do we do so taking into account uncertainty in both data and models? These questions can be mathematically framed as Bayesian inverse problems. While...

Due to the notable potentials of additive manufacturing (AM), the interest in AM has risen significantly across several industries during the past decade. One of the key factors governing the mechanical properties of an additively-manufactured part is the solidification microstructure. However, the spatial and temporal resolution required for the simulation of the solidification process is...

Intense lasers have the ability to accelerate ions to high energies over very short distances, but the beam quality generated through these methods is not yet ready for many applications. We developed a framework using evolutionary algorithms to automatically run thousands of one-dimensional (1D) particle-in-cell simulations to optimize the conversion from laser energy to ion energy. The...

Recently, the advent of deep learning has spurred interest in the development of physics-informed neural networks (PINN) for efficiently solving partial differential equations (PDEs), particularly in a parametric setting. Among all different classes of deep neural networks, the convolutional neural network (CNN) has attracted increasing attention in the scientific machine learning community,...

Phase field models, in particular, the Allen-Cahn type and Cahn-Hilliard type equations, have been widely used to investigate interfacial dynamic problems. Designing accurate, efficient, and stable numerical algorithms for solving the phase field models has been an active field for decades. We focus on using the deep neural network to design an automatic numerical solver for the Allen-Cahn and...

System identification from noisy data is challenging in many science and engineering fields. In current work, we present an approach of system identification by sparse Bayesian learning methods. The key idea is to determine the sparse relevant weights from a constructed library by learning from noisy data. The sparse promoting prior is used to regularize the learning process. Furthermore, to...

We present a weak formulation and discretization of the system discovery problem from noisy measurement data. This method of learning differential equations from data replaces point-wise derivative approximations with local integration and improves on the standard SINDy algorithm by orders of magnitude. Linear transformations associated with local integration are used to construct covariance...