13–17 Sept 2021
Virtual event
Europe/Berlin timezone

Learning Dynamics of STEM by Enforcing Physical Consistency with Phase-Field Models

14 Sept 2021, 19:00
2h
Virtual event

Virtual event

Speakers

Lekshmi Sreekala (Max-Planck-Institut für Eisenforschung GmbH) Pawan Goyal (Max Planck Institute for Dynamics of Complex Technical Systems)

Description

In this poster, we present our research goals of a recently BiGmax funded project towards learning dynamics of scanning transmission electron microscopy (STEM) by incorporating physical consistency with phase-field models. The primary idea of this project is to develop machine learning (ML)-based modeling of an interpretable coarse-grained dynamic model utilizing in situ STEM video sequences fulfilling a suitable dynamical phase-field equation. The modeling approach aims to discover governing equations by utilizing the video sequence data and prior physics knowledge that is directly compatible with analytic theories or subsequent ML-based analysis.

Primary authors

Christian Liebscher ( Max-Planck-Institut für Eisenforschung GmbH) Christoph Freysoldt ( Max-Planck-Institut für Eisenforschung GmbH) Jaber Mianroodi ( Max-Planck-Institut für Eisenforschung GmbH) Lekshmi Sreekala (Max-Planck-Institut für Eisenforschung GmbH) Ning Wang ( Max-Planck-Institut für Eisenforschung GmbH) Pawan Goyal (Max Planck Institute for Dynamics of Complex Technical Systems) Peter Benner (Max Planck Institute for Dynamics of Complex Technical Systems) Sandeep Reddy Bukka (Max Planck Institute for Dynamics of Complex Technical Systems)

Presentation materials

There are no materials yet.